Table of Contents  
RESEARCH LETTER
Year : 2011  |  Volume : 2  |  Issue : 4  |  Page : 285-287  

Effect of Erythrina variegata on experimental atherosclerosis in guinea pigs


1 Faculty of Pharmacy, Sri Ramachandra University, Porur, India
2 Department of Pathology, Sri Ramachandra University, Porur, India
3 Department of Chemistry, Captain Srinivasamurty Drug Research Institute for Ayurveda and Siddha, Arumbakkam, Chennai 600 116, India

Date of Web Publication12-Oct-2011

Correspondence Address:
Mangathayaru Kalachaveedu
Department of Pharmacognosy, Faculty of Pharmacy Ramachandra University, Porur, Chennai 600 116
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0976-500X.85950

Rights and Permissions

How to cite this article:
Kalachaveedu M, Kuruvilla S, Balakrishna K. Effect of Erythrina variegata on experimental atherosclerosis in guinea pigs. J Pharmacol Pharmacother 2011;2:285-7

How to cite this URL:
Kalachaveedu M, Kuruvilla S, Balakrishna K. Effect of Erythrina variegata on experimental atherosclerosis in guinea pigs. J Pharmacol Pharmacother [serial online] 2011 [cited 2018 Feb 20];2:285-7. Available from: http://www.jpharmacol.com/text.asp?2011/2/4/285/85950

Sir,

Leaves of Erythrina variegata (Indian coral tree) (family: Fabaceae) eaten as a pot herb, are used as an antiobesity drug in Siddha medicine. [1] It has folkloric reputation as antiinflammatory in India, China and South East Asia, and different parts of the plant are reported with insecticidal, hemagglutinating, curaric, skeletal muscle relaxant, feeding deterrent, antispasmodic, antimycobacterial and antiosteoporotic activities. [2] In this study, the influence of the total alcohol extract of E. variegata (Ev) on experimental atherosclerosis in guinea pigs has been evaluated (IAEC approved, Ref: IAEC/SRMC and RI/41/2005). The extract was well tolerated, with no signs of toxicity up to 2 g/kg b.wt. in the acute toxicity study.

Ten month-old guinea pigs (750 g) were used for the study. They were fed high-fat diet (HFD) (Guinea pig pellet diet + 0.2% w/w cholesterol) for 30 days. Six animals were sacrificed and evaluated for the onset of early atherosclerotic changes in the coronary artery, aorta and major organs. [3] Animals were divided into four groups of six animals each and were treated as follows:

group I - pellet diet only,

group II - HFD fed group,

group III - HFD + 100 mg/kg Ev, and

group IV - HFD + 10 mg/kg atorvastatin calcium.

At the end of experimentation, they were fasted overnight, sacrificed under ether anesthesia and blood was collected by cardiac puncture for serum lipid estimation. Aorta was accessed through the left ventricle, slit open longitudinally, and the entire length of the aorta from the base of the aortic arch up to the diaphragmatic hiatus was resected out, washed in ice-cold saline, trimmed of adventitial fat and stored in formal calcium (10% formalin 1% CaCl 2 ). The area of atherosclerotic plaque in the aorta was histomorphometrically measured by Oil Red O staining [4] using Image ProPlus Image analysis system. The entire anterior descending left coronary artery was quickly identified and dissected out for histopathological examination. Heart and liver were harvested, washed with ice-cold saline, trimmed of adventitial fat, weighed and stored at −80°C until needed for analysis. They were evaluated for measurement of thiobarbituric acid reactive substances (TBARS) [5] reduced glutathione [6] superoxide dismutase (SOD) [7] and glutathione peroxidase (GPX). [8] The experimental data were statistically analyzed by one-way analysis of variance (ANOVA) followed by Dunnett's 't post test. P<0.05 was considered significant.

Ev of 1.39% w/w yielded b-sitosterol (433 mg, 1.445 w/w), oleanolic acid (65 mg, 0.217% w/w) and b-sitosterol glycoside (108 mg, 0.36% w/w) on column chromatographic processing. Histopathological assessment of the left coronary artery from animals sacrificed after the initial HFD administration of 1 month revealed initiation of atherosclerotic changes. Serum lipid levels of the experimental animals summarized in [Table 1] shows a statistically significant rise (P<0.001) in total cholesterol (TC; 229%), low density lipoprotein (LDL)C (890%) and the atherosclerosis index (AI) (254%) in group II animals compared to normal controls. Lipid profile results of the two treatment groups (III and IV) are in comparison with positive control. Ev administration reduced TC (33%), triglyceride (TGL; 39%) and LDL (36%), while high density lipoprotein (HDL) levels remained unaltered demonstrating its marginal hypolipidemic influence. Atorvastatin calcium brought about a typical hypolipidemic response: TC (28%), TGL (69%), HDL-C (+330%), LDL-C (56%) and AI (−89%).Body weight changes of the experimental animals, recorded on a month-wise basis during experimentation, showed a 12% increase in group II, 8% increase in Ev treated group III (statistically different form group II at P<0.01), and 11.5% increase in group IV as against 10% increase for normal control. The least increase in body weight due to Ev is noteworthy in view of the antiobesity claims for the drug in traditional medicine.
Table 1: Serum lipid profile and tissue antioxidant status of experimental animals

Click here to view


Heart and liver tissue antioxidant status in experimental animals is reflective of hyperlipidemia related pro-oxidant damage in group II which showed a decrease in GSH (P<0.001) and elevation in TBARS (P<0.01) in liver. There has been a decrease in GPX, SOD (P<0.05) and GSH compared to normal control in heart. Ev showed a significant improvement in GPX and GSH in heart over positive control. Thus, its hypolipidemic effect has not been augmented by the antioxidant component in the liver.

Representative photographs of histopathological sections of the coronary artery are presented in [Figure 1]. Normal coronary artery shows an intact intima [Figure 1]a. Myocardial tissue appears normal. HFD treated group II [Figure 1]b shows discontinuous endothelium with fatty changes in the surrounding cardiac tissue. Apart from intracellular lipid, extensive aggregates of foam cells are seen in the media [Figure 1]c. These have completely replaced its muscular pattern, typical of primary medial destruction in early atherosclerosis. Ev treatment appears to have reversed these changes. Sections from these groups [Figure 1]d and e show a normal continuous endothelium. Also, the cardiac tissue is devoid of fatty degeneration. Sections of coronary artery from atorvastatin calcium treated animals exhibit normal coronary histopathology.
Figure 1: Histopathological examination of coronary artery sections from experimental animals (H and E). (a) Vehicle treated normal control group on pellet diet. (b) Positive control; black arrows show coronary artery with damaged intima with large foam cells. Note the foam cells in the media [white arrow]. (d and e) Ev treated and (f) atorvastatin calcium treated groups show normal coronary artery. Foam cells are less evident in both intima and media in these sections

Click here to view


While Oil Red O stained intimal surface of aorta from untreated control was devoid of plaque, brick red lipid deposits measuring 15, 8 and 11% of total intimal surface were seen in HFD, Ev and atorvastatin treated groups, respectively.

Antioxidant status of the tested tissues in HFD fed group II suggests hyperlipidemia associated oxidative stress that triggers lipid peroxidation. Resulting cellular damage evidenced by coronary intimal, cardiac tissue damage due to proinflammatory changes has triggered atherosclerotic changes as evidenced by lipid-laden lesion areas in the aorta.

In Ev treated group III, these changes have been beneficially altered. Hypolipidemic activity of the leaf extract reported by us earlier in HFD fed rats, [9] present evidence of healing in coronary artery over high-fat control group II and 47% reduction in the extent of aortic lipophilic lesion areas, and minimal increase in body weight relative to other groups strongly suggest its atheroprotective and anti-obesity influence. There has also been an antioxidant effect in heart tissue. In view of the antioxidant, anti-inflammatory, antihyperlipidemic and DNA protective activities [10] of b-sitosterol, oleanolic acid and bsitosterol glycoside isolated in appreciable quantity from Ev, it may be suggested that the observed anti-atherosclerotic activity of the extract could be consequent to hypolipidemic and anti-inflammatory influence of the isolated phytoconstituents.

 
   References Top

1.Yoganarasimhan SN. Medicinal Plants of India. New Delhi: Vedam e Books; 2000. p. 149.  Back to cited text no. 1
    
2.The Medicinal Plants in the South Pacific. Manila: WHO Regional Publications; 1998. p. 75.  Back to cited text no. 2
    
3.Mangathayaru K, Sarah K, Balakrishna K, Venkhatesh J. Modulatory effect of Inula racemosa Hook f (Asteraceae) on experimental atherosclerosis in guinea pigs. J Pharm Pharmacol 2009;61:1111-8.  Back to cited text no. 3
    
4.Efendy JL, Simmons DL, Campbell GR, Campbell JH. The effect of aged garlic extract 'kyolic' on the development of experimental atherosclerosis. Atherosclerosis 1997;132:37-42.  Back to cited text no. 4
[PUBMED]  [FULLTEXT]  
5.Okhawa H, Ohishi N, Yagi K. Assay of lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 1979;95:351-8.  Back to cited text no. 5
    
6.Moran MS, Defieree TW, Mannervik B. Levels of glutathione reductase and glutathione S transferase activities in rat lung and liver. Biochem Biophys Acta 1979;582:67-78.  Back to cited text no. 6
    
7.Kakkar P, Das B, Viswanathan PN. A modified spectrophotometric assay of super oxide dismutase. Indian J Biochem Biophys 1984;21:130-2.  Back to cited text no. 7
[PUBMED]    
8.Rotruck JT, Pope AL, Gantter HE, Swanson AB, Hafeman DG, Hoekstra WG. Selenium: Biochemical roles as a component of glutathione peroxidase. Science 1973;179:588-90.  Back to cited text no. 8
    
9.Mangathayaru K, Balakrishna K, Sarah K, Umamaheswara Reddy C. Modulatory effect of Erythrina variegata on experimental hyperlipidaemia in male wistar rats. Pharmacognosy Res 2009;1:202-7.  Back to cited text no. 9
    
10.Andrikopoulos NK, Kaliora AC, Assimopoulou AN, Papapeorgiou VP. Biological activity of some naturally occuring resins, gums and pigments against in vitro LDL oxidation. Phytother Res 2003;17:501-7.  Back to cited text no. 10
[PUBMED]  [FULLTEXT]  


    Figures

  [Figure 1]
 
 
    Tables

  [Table 1]



 

Top
  
 
  Search
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

 
  In this article
    References
    Article Figures
    Article Tables

 Article Access Statistics
    Viewed1210    
    Printed89    
    Emailed0    
    PDF Downloaded351    
    Comments [Add]    

Recommend this journal