RESEARCH PAPER
Year : 2013  |  Volume : 4  |  Issue : 2  |  Page : 103-109

Modulation of multidrug resistance 1 expression and function in retinoblastoma cells by curcumin


1 L and T Department of Ocular Pathology, Vision Research Foundation, Sankara Nethralaya, Nugambakkam, Chennai, India
2 Centre for Bioinformatics, Vision Research Foundation, Sankara Nethralaya, Nugambakkam, Chennai, India

Correspondence Address:
Umashankar Vetrivel
Centre for Bioinformatics, Vision Research Foundation, Sankara Nethralaya, 18, College Road, Nungambakkam, Chennai - 600 006, Tamil Nadu
India
Login to access the Email id

Source of Support: Grant from the Indian Council Medical Research (5/13/25/04/NCD.III), Conflict of Interest: None


DOI: 10.4103/0976-500X.110882

Rights and Permissions

Objective: To determine the possible interaction of curcumin with P-glycoprotein (P-gp) expression and function by in vitro and in silico studies. Materials and Methods: In this study, curcumin was compared for its potential to modulate the expression and function of P-gp in Y79 RB cells by western blot, RT-PCR (reverse transcription polymerase chain reaction) and functional assay. Further, in silico molecular modeling and docking simulations were performed to deduce the inhibitory binding mode of curcumin. Results: Western blot and RT-PCR analysis decreased the expression of P-gp in a dose-dependent manner. The effect of curcumin on P-gp function was demonstrated by Rhodamine 123 (Rh123) accumulation and efflux study. Curcumin increased the accumulation of Rh123 and decreased its efflux in retinoblastoma (RB) cells. In addition, curcumin inhibited verapamil stimulated ATPase activity and photoaffinity labeling study showed no effect on the binding of 8-azido-ATP-biotin, indicating its interaction at the substrate binding site. Moreover, molecular docking studies concurrently infer the binding of curcumin into the substrate binding site of P-gp with a binding energy of -7.66 kcal/mol. Conclusion: These findings indicate that curcumin suppresses the MDR1 expression and function, and therefore may be useful as modulators of multidrug resistance in RB tumor.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed1647    
    Printed60    
    Emailed0    
    PDF Downloaded372    
    Comments [Add]    
    Cited by others 3    

Recommend this journal