RESEARCH PAPER
Year : 2016  |  Volume : 7  |  Issue : 1  |  Page : 6-14

Asenapine modulates nitric oxide release and calcium movements in cardiomyoblasts


1 Department of Translational Medicine, Laboratory of Physiology and Experimental Surgery, University of Eastern Piedmont "A. Avogadro", Via Solaroli 17, I-28100, Novara; Azienda Ospedaliera Universitaria Maggiore Della Carità, Corso Mazzini 36, Novara, Italy
2 Azienda Ospedaliera Universitaria Maggiore Della Carità, Corso Mazzini 36, Novara; Department of Translational Medicine, Psichiatric Unit, University of Eastern Piedmont "A. Avogadro", Via Solaroli 17, I-28100, Novara, Italy

Correspondence Address:
Elena Grossini
Department of Translational Medicine, Laboratory of Physiology and Experimental Surgery, University of Eastern Piedmont "A. Avogadro", Via Solaroli 17, I-28100 Novara
Italy
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0976-500X.179358

Rights and Permissions

Objective: To examine the effects of asenapine on nitric oxide (NO) release and Ca2+ transients in H9C2 cell line, which were either subjected to peroxidation or not. Materials and Methods: H9C2 were treated with asenapine alone or in presence of intracellular kinase blockers, serotoninergic and dopaminergic antagonists, and voltage Ca2+ channels inhibitors. Experiments were also performed in H9C2 treated with hydrogen peroxide. NO release and intracellular Ca2+ were measured through specific probes. Results: In H9C2, asenapine differently modulated NO release and Ca2+ movements depending on peroxidative condition. The Ca2+ pool mobilized by asenapine mainly originated from the extracellular space and was slightly affected by thapsigargin. Moreover, the effects of asenapine were reduced or prevented by kinases blockers, dopaminergic and serotoninergic receptors inhibitors, and voltage Ca2+ channels blockers.Conclusions: On the basis of our findings, we can conclude that asenapine by interacting with its specific receptors, exerts dual effects on NO release and Ca2+ homeostasis in H9C2; this would be of particular clinical relevance when considering their role in cardiac function modulation.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed1691    
    Printed37    
    Emailed1    
    PDF Downloaded467    
    Comments [Add]    

Recommend this journal