RESEARCH PAPER
Year : 2018  |  Volume : 9  |  Issue : 2  |  Page : 92-103

Investigation of hERG1b influence on hERG channel pharmacology at physiological temperature


1 School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, The University of Bristol, Bristol, BS8 1TD, UK
2 Biological Physics Group, School of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, UK
3 School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, The University of Bristol, Bristol, BS8 1TD; Biological Physics Group, School of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, UK

Correspondence Address:
Jules C Hancox
School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, The University of Bristol, Bristol, BS8 1TD
UK
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/jpp.JPP_158_17

Rights and Permissions

Objective: To compare the inhibitory potencies of selected drugs (chloroquine, fluoxetine, cisapride, and ebastine [EBA]) on human Ether-a-go-go-Related Gene (hERG) potassium channel current carried by either hERG1a or co-expressed hERG 1a/1b channel isoforms. Materials and Methods: Measurements of hERG current (IhERG) were made at 37°C from HEK-293 cells expressing either the hERG1a isoform or co-expressing hERG1a and 1b isoforms. A standard “square” waveform voltage protocol was used to elicit IhERG, and tail current measurements were used to construct concentration-response relations for each drug. Results: For fluoxetine, cisapride, and chloroquine, the observed potencies of inhibition of IhERGwere similar between hERG1 and 1a/1b expression conditions. Further experiments in which the hERG1b isoform was expressed alone also failed to show different potencies from hERG1a for these drugs. Fluoxetine was also tested at room temperature and showed similar potencies against hERG 1a and 1a/1b. EBA was more potent against hERG1a than hERG1a/1b with respective half maximal inhibitory concentration (IC50) values of 32 nM ( 95% confidence interval [CI] 24 nM–43 nM) and 185 nM (CI 114 nM–304 nM), a 5.8-fold difference. At ambient temperature, EBA was also more potent against hERG1a than 1a/1b, with a 2.4-fold difference in IC50. Conclusion: Comparison of these findings with prior planar patch-clamp data suggests that automated patch-clamp data on hERG1a/1b versus hERG 1a at ambient temperature cannot automatically be extrapolated to manual patch clamp at 37°C. The results with EBA highlight that, during hERG screening of novel drugs, there is a case for promising candidates to incorporate some measurements on hERG1a/1b as well as hERG1a channels.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed269    
    Printed8    
    Emailed0    
    PDF Downloaded69    
    Comments [Add]    

Recommend this journal