Year : 2011  |  Volume : 2  |  Issue : 1  |  Page : 3-6

Evaluation of nootropic and neuroprotective effects of low dose aspirin in rats

1 Department of Pharmacology, N.R.S. Medical College, Kolkata, India
2 Department of Pharmacology, Modern Dental College, Indore, Madhya Pradesh, India
3 Department of Pharmacology, Padmashree Dr. D.Y. Patil Medical College, Pimpri, Pune, India

Correspondence Address:
Arijit Ghosh
Flat no-B-7/1, Iswarchandra Niwas, 68/1 Bagmari Road, Kolkata - 700 054
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/0976-500X.77079

Rights and Permissions

Objective: To evaluate the nootropic and neuroprotective effects of aspirin in Sprague Dawley rats. Materials and Methods: Retention of conditioned avoidance response (CAR) and central 5-HT-mediated behavior (lithium-induced head twitches) were assessed using repeated electroconvulsive shock (ECS) in rats. Rats were divided into eight groups: control (pretreated with distilled water), scopolamine (0.5 mg/kg i.p.), ECS (150 V, 50 Hz sinusoidal with intensity of 210 mA for 0.5 s) pretreated, aspirin (6.75 mg/kg orally) pretreated, combined scopolamine and aspirin pretreated, ondansetron (0.36 mg/kg orally) pretreated, combined ECS and ondansetron pretreated and combined ECS and aspirin pretreated groups. Data was analyzed by the chi-square test and ANOVA. Results: Findings show that administration of single ECS daily for consecutive 8 days results in enhancement of 5-HT-mediated behavior (lithium-induced head twitches) and in disruption of the retention of CAR. Aspirin and ondansetron administration significantly increased the retention of conditioned avoidance response compared to control. Ondansetron and aspirin significantly prevented ECS-induced attenuation of the retention of conditioned avoidance response also. On the other hand, ondansetron and aspirin significantly retarded the ECS-induced enhancement of 5-HT-mediated behavior. Conclusion: Inhibition of the serotonergic transmission by aspirin is responsible for its nootropic and neuroprotective actions.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded959    
    Comments [Add]    
    Cited by others 4    

Recommend this journal