Journal of Pharmacology and Pharmacotherapeutics

RESEARCH PAPER
Year
: 2013  |  Volume : 4  |  Issue : 2  |  Page : 116--124

Assessment of proarrhythmic activity of chloroquine in in vivo and ex vivo rabbit models


Shailaja B Khobragade1, Pankaj Gupta2, Prashant Gurav3, Girish Chaudhari3, Madhumanjiri M Gatne3, Vyas M Shingatgeri1 
1 Department of Drug Safety Evaluation, Ranbaxy Research Laboratories, Gurgaon, Haryana, India
2 Department of Pharmacology, Central Research Institute for Homoeopathy, Noida, India
3 Department of Pharmacology and Toxicology, Bombay Veterinary College, Mumbai, Maharashtra, India

Correspondence Address:
Pankaj Gupta
Research Officer (Pharmacology), Central Research Institute for Homoeopathy, Noida
India

Objectives: To evaluate the prolongation of ventricular repolarization and proarrhythmic activity of antimalarial drug chloroquine in two rabbit proarrhythmia models viz., in vivo α1 adrenoceptor-stimulated anesthetized rabbit and ex vivo isolated Langendorff rabbit heart using clofilium as standard proarrhythmic agent. Materials and Methods: In the in vivo model, three groups of rabbits, anesthetized by pentobarbitone sodium and α-chloralose, sensitized with α1 agonist methoxamine followed by either continuous infusion of saline (control) or clofilium (3 mg/kg) or chloroquine (21 mg/kg) for 30 min. In ex vivo model, rabbit hearts were perfused with clofilium (10 μM) or chloroquine (300 μM) continuously after priming along with methoxamine, acetylcholine chloride and propranolol hydrochloride. Results: In these models, prolongation of repolarization during α1 -adrenoceptor stimulation produced early after depolarization (EAD) and Torsade de pointes (TdP). Saline infusion did not induce any abnormality in the animals. Clofilium caused expected changes in the electrocardiogram in both the models including TdP (50.0% in in vivo and 66.67% in ex vivo). Chloroquine caused decrease in heart rate and increase in the corrected QT (QTc) interval in both the models. Further, apart from different stages of arrhythmia, TdP was evident in 33.33% in ex vivo model, whereas no TdP was observed in in vivo model. Conclusions: The results indicated that proarrhythmic potential of chloroquine and clofilium was well evaluated in both the models; moreover, both the models can be used to assess the proarrhythmic potential of the new drug candidates.


How to cite this article:
Khobragade SB, Gupta P, Gurav P, Chaudhari G, Gatne MM, Shingatgeri VM. Assessment of proarrhythmic activity of chloroquine in in vivo and ex vivo rabbit models.J Pharmacol Pharmacother 2013;4:116-124


How to cite this URL:
Khobragade SB, Gupta P, Gurav P, Chaudhari G, Gatne MM, Shingatgeri VM. Assessment of proarrhythmic activity of chloroquine in in vivo and ex vivo rabbit models. J Pharmacol Pharmacother [serial online] 2013 [cited 2021 Oct 18 ];4:116-124
Available from: http://www.jpharmacol.com/article.asp?issn=0976-500X;year=2013;volume=4;issue=2;spage=116;epage=124;aulast=Khobragade;type=0